If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(2^2x+3)-5(2^x+2)-156=0
We multiply parentheses
6x^2-10x+9-10-156=0
We add all the numbers together, and all the variables
6x^2-10x-157=0
a = 6; b = -10; c = -157;
Δ = b2-4ac
Δ = -102-4·6·(-157)
Δ = 3868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3868}=\sqrt{4*967}=\sqrt{4}*\sqrt{967}=2\sqrt{967}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{967}}{2*6}=\frac{10-2\sqrt{967}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{967}}{2*6}=\frac{10+2\sqrt{967}}{12} $
| -6(1+7k)=34-34 | | n-8.09=-11.09 | | 2x30+x=180 | | -7x-6=-9x-4 | | 3y+3=-4(y+1) | | 1/6d+2/3=1/4(1d+(-2)) | | -7x-6=-x- | | 6-6x=5-9x+8 | | 1/6d+2/3=1/4(1d+2) | | 9m+5=-13;-2;-3;-4 | | -2(n+3)+-4=8 | | 2p+10=4p+12 | | 5x+19x-2=6(4x+4) | | 3w+w=120 | | -2(x-6)=-7x-3 | | 16x+6=32 | | (4x+3)^2=64 | | -11=5d+5-9d | | -10=2y+2 | | F(t)=9 | | 5e-6=10 | | 4x-9=6x× | | 6a-4÷7=8 | | 2(x-4)-5x=-20 | | 14-m=6m | | 3x/8=80 | | 5x-3(x-3)=-6+4x+1 | | -5=-7v+4(v+4) | | z+4)=6(5z+2) | | 8w-8-6w=4w+1 | | -8-7y+7y=10 | | 4k+36=10k |